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FORMATION OF NONMETALLIC INCLUSIONS OF VARIABLE COMPOSITION

DURING UNIDIRECTIONAL SOLIDIFICATION OF LIQUID STEEL

UDC 669.18.046.518-412A. N. Cherepanov, V. N. Popov,

S. I. Plaksin,1 and A. A. Kazakov2

A two-dimensional unsteady mathematical model is presented for numerical study of the for-
mation of nitrogen-containing compounds of variable composition during unidirectional solid-
ification of liquid steel. The model allows calculation of the distributions of temperature and
concentrations of soluble admixtures, the shape of solidification boundaries, the coordinate of
the beginning of the chemical reaction, and the composition and mass of inclusions formed in
the uncrystallized zone of the ingot and in the two-phase region.

Introduction. The quality of metal production may be improved and the cost may be reduced
by using nitrogen to form a dispersed-composite structure of cast metal. The results of [1–3] show that
even small quantities of nitrogen and nitride-forming elements significantly improve the mechanical and
physicochemical properties of steel and alloys. However, the positive effect of nitrides on the quality of the
metal is manifested only for concentrations of nitrogen and nitride-forming elements typical of a particular
alloy. If these concentrations are significantly different from the optimal values, the metal properties may
become worse. Therefore, the problem of finding the optimal concentrations of nitride-forming metals and
nitrogen and the study of the structure and dispersion of endogenous inclusions, being related to the processes
of formation of the dendritic structure of the solidifying alloy, become extremely important.

In the present paper we consider an unsteady two-dimensional mathematical model for studying the
formation of nitrogen-containing compounds of variable composition during continuous extension of a steel
ingot in a tubular container.

1. Physical Formulation of the Problem. We consider the process of crystallization of a multi-
species alloy located in an axisymmetric crucible-container (Fig. 1). The crucible with the alloy is extended
downward with a constant velocity v from the zone of the heater toward the cooler and then is cooled in a
gaseous medium. The outer surface of the crucible is separated from the inner surface of the cooler (which
is a copper shell with cooling water circulating over an annular channel) by a gas gap of width δc. There is
also a gap of width δh between the crucible and the heater. Disk screens are placed in the region separating
the lower face of the heater from the upper face of the cooler.

2. Governing Equations and Boundary Conditions. We use a coordinate system (r, z), where
the z axis coincides with the axis of symmetry of the ingot, and the origin is the intersection of the z axis
with the plane of the upper face of the cooler. The z axis is directed downward and coincides with the
direction of ingot extension. Ignoring the diffusion of components dissolved in the liquid and solid phases
and the shrinkage phenomena during phase transition, we write the heat- and mass-transfer equations in the
approximation of the theory of the quasiequilibrium two-phase zone [3, 4]:
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Fig. 1. Layout of the facility for studying unidirectional crystallization of steel: 1) liquid
metal; 2) crucible; 3) heater; 4) ingot; 5) screens; 6) cooler.
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fliq ≡ 1 for T > T 0
liq, fliq ≡ 0 for T < TE ,

(4)

i = 1 for r ∈ [0, r1], i = 2, fliq ≡ 0 for r ∈ [r1, r2].

Here T is the temperature, TA is the melting point of the pure solvent component, T 0
liq and TE are the

temperatures of the beginning and end of solidification of the melt, æ0 is the crystallization heat, ci, ρi, and
λi are the heat capacity, density, and thermal conductivity, respectively, r1 and r2 are the ingot and crucible
radii, t is the time, fliq is the fraction of the liquid phase, Cj is the concentration, kj is the coefficient of
distribution of the jth dissolved component, N is the number of components in the alloy, m is the number
of components participating in chemical reactions, and βj is the absolute value of the angular coefficient of
the liquidus line of the alloy of the jth component and iron; the superscript i indicates physical quantities
that refer to the ingot (i = 1) and the crucible (i = 2); d/dt = ∂/∂t+ v∂/∂z. The first term in the right part
of Eq. (2) denotes capturing of the jth dissolved component by the growing solid phase; the second term is
the velocity of transition (binding) of the νth reagent into a nonmetallic inclusion during its growth in the
two-phase region. The quantity dIν/dt characterizes the velocity of transition of the νth component to a
chemical compound of variable composition, averaged over the cross section of the dendritic cell.

To obtain the dependence of dIν/dt on the physical parameters of the solidifying alloy, we introduce
the following notation: ncomp is the number of molecules of compounds in a unit volume, AΣ =

∑
xνAν is

the molecular weight of the compound, and xν and Aν are, respectively, the molar concentration and atomic
weight of the νth element in the compound. Let µν = xνAν be the total atomic weight of the νth element in a
molecule of the compound. A mass of the νth element dIν = d(ncompµν) is bound into a nonmetallic inclusion
in a unit volume during the time dt. Passing to the mass fraction of inclusions formed in the dendritic cell
M = ncompAΣ/ρ

1, we obtain

dIν
dt

=
ρ1d(MYν)

dt
, (5)
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where ρ1 is the steel density, which is assumed to be independent of the aggregate state and temperature, and
Yν = xνAν/AΣ are the fractions of atomic weights of reagents in the compound. We now define the quantity
dIν/dt averaged over the cross section of the dendritic cell by the relation
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where ĪνR is the mean value of Iν over the dendrite boundary and a0 and R are the cell and dendrite radii,
respectively. For certainty, we assume that dendrites have a columnar structure. Taking into account that
fliq = (a2

0 −R2)/a2
0, we represent the latter relation as
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where 〈Iν〉 =
2

a2
0 −R2

a0∫
R

Iνr dr is the mean value of Iν over the cross section of the liquid phase. Then ,we

assume that ĪνR = 〈Iν〉. From (6), taking into account Eq. (5), after appropriate transformations, we find
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= fliq
d〈Iν〉
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.

Substituting this expression into Eq. (2) and omitting the angular brackets for averaged quantities, we obtain
the mass-transfer equation for the reacting components:

dCj
dt

= −(1− kj)Cj
d(ln fliq)

dt
− d(MYν)

dt
. (7)

The distributions of concentrations of the components in the region where there are no chemical reactions
and the distributions of concentrations of the components that do not participate in the reactions are found
from Eq. (7) for M ≡ 0.

For certainty, we consider a five-species (N = 5) iron-based alloy (Fe+C+Ti+Cr+N) whose solidifica-
tion is accompanied by formation of carbonitride compounds of variable composition of the type TiCxN1−x.
Then we obtain the following relations for Yν :

Y1 = A1/AΣ, Y2 = xA2/AΣ, Y3 = (1− x)A3/AΣ. (8)

Here AΣ = A1 + xA2 + (1− x)A3; the subscripts ν = 1, 2, and 3 refer to Ti, C, and N, respectively.
The conditions of equilibrium of the reaction of inclusion formation and equilibrium of its composition

in the approximation of an ideal solution lead to the equations [2]

x = 1 + C3K13/(C2K12), C1C2 = (1− x)/K13, (9)

where K12 and K13 are the equilibrium constants of simple compounds TiC and TiN, respectively, the
expressions for which were prescribed in accordance with [2, 5, 6].

Following [7], we determine the liquidus temperature of the alloy considered:

Tliq = 1812− 78CC − 10CTi − 90CN − 1.5CCr

(CC, CTi, CN, and CCr are the concentrations of the corresponding components).
System (1), (7), (3), (4), taking into account relations (8) and (9), is solved for the following boundary

conditions:
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Here αj = λg/δj + εnjσ0(T 2
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+ T 2
j )(T
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+ Tj) are the heat-transfer coefficients, which characterize the

complex heat transfer by radiation and heat conduction of the gas between the outer surface of the crucible
and inner surfaces of the heater (j ≡ h) and the cooler (j ≡ c), λg is the heat conductivity of the gas,
εnj = (ε−1

t + ε−1
j − 1)−1, εt, εh, and εc are the emissivities of the crucible, heater, and cooler, respectively,

σ0 = 5.67·10−8 W/(m2 ·K4) is the Stefan–Boltzmann constant, Th, Tc, and Ts are the prescribed temperatures
of the inner surfaces of the heater, cooler, and screening surfaces in the gap separating the lower face of the
heater from the upper face of the cooler (Fig. 1), −zh is the coordinate of the lower face of the heater, and
z+(t) and z−(t) are the laws of motion of the upper and lower faces of the crucible prescribed in the form of
linear functions of the time t: z+(t) = −z0

+ + vt and z−(t) = −z0
− + vt. It is assumed that the crucible with

the melt is completely located in the zone of the heater at the initial time, and the surface of the lower face
of the crucible is located in the plane of the lower face of the heater (z = −zh).

The diameter of the dendritic cell d1 = 2a0 in the steady regime is determined by the empirical
relation [8]

d1 = b10G
−γv−scr ,

whereG is the temperature gradient averaged along the two-phase region, b10, γ, and s are empirical constants,
and vcr is the local crystallization velocity (for unidirectional solidification, we have vcr = v).

The initial system of equations with the boundary conditions (10) was solved numerically with the
help of an implicit difference scheme approximating the initial system with an error of order O(τ, h2). The
calculations were performed on a 25 × 90 uniform grid in the r and z directions, respectively. The variable
time step τ was chosen from the conditions of stability of numerical calculation and convergence of iterations
and varied from 10−2 to 10−3 sec. To solve the systems of algebraic equations obtained at each time step,
we used the methods of block sequential upper relaxation (with an optimal iteration parameter) and simple
iterations. The calculations were terminated when the relative error reached ε = 0.002.

3. Analysis of Results. Some results of numerical simulation are plotted in Figs. 2–5 for different
ingot-extension velocities and initial concentrations of nitrogen in the steady regime of crystallization. The
calculations were performed for the following initial data:

— alloy parameters C10 = C0
Ti = 0.5%, C20 = C0

C = 0.06%, C30 = C0
N = 0.002 and 0.005%, C40 =

C0
Cr = 14.4%, TA = 1802 K, TE = 1760 K, β1 = 10 K/%, β2 = 78 K/%, β3 = 90 K/%, β4 = 1.5 K/%,

k1 = 0.7, k2 = 0.4, k3 = 0.38, k4 = 0.91, λ1 = 23 W/(m · K), c1 = 694 J/(kg · K), ρ1 = 7.2 · 103 kg/m3,
æ0 = 3.37 · 105 J/kg, b10 = 1.52 · 10−2 m · (K/sec)0.26, s = 0.26, and γ = 0.46;

— crucible parameters λ2 = 8.721 W/(m · K), c2 = 838 J/(kg · K), ρ2 = 1.5 · 103 kg/m3, εt = 0.15,
δt = 1.5 · 10−3 m, lt = 90 · 10−3 m, and r2 = 5 · 10−3 m;

— heater and cooler parameters Th = 1923 K and εh = 0.9, Tc = 333 K and εc = 0.8, δc = 1.5 · 10−3 m
and δh = 2 · 10−3 m, and λg = 0.02 W/(m ·K).

The change in the temperature Ts in the gap between the upper face of the cooler and the lower face
of the heater is set by the linear function Ts = Th + (Th−Tc)z/zh, where zh = 0.02 m and z ∈ [−zh, 0]. When
the crucible is moved down to the cooler, the melt is cooled and solidifies in the bottom-to-top direction. The
width and morphology of the two-phase region change due to the tip effect until the process of solidification
reaches the steady regime. This regime occurs when the length of the solidified metal reaches approximately
two diameters of the crucible and remains as long as the temperature of the melt in the upper part of the
crucible is constant and equal to the initial value. The morphology of the two-phase region in the regime of
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Fig. 2 Fig. 3

Fig. 2. Structure of the two-phase region of the ingot for extension velocities v = 10−4, 1.167 · 10−4, and
8 · 10−4 m/sec (dashed, dot-and-dashed, and solid curves, respectively); the initial and final boundaries
of the two-phase region are marked by 1 and 2, respectively.

Fig. 3. Distance d1 between the major axes of the dendrites versus the ingot-extension velocity and the
heater temperature.

Fig. 4. Lengthwise distributions of the relative concentrations C̄j , composition x, and mass M of
TiCxN1−x compounds for C0

N = 0.002 (a) and 0.005% (b).

solidification depends significantly on the Peclet number Pe = c1ρ1vr1/λ
1. For Pe� 1, the boundaries of the

two-phase region are plane (Fig. 2), and the value of G remains unchanged along the radius r. In accordance
with this, the primary structure uniform across the ingot is formed.

For Pe > 1, a liquid–solid crater is formed; the quantitiesG and vcr, and hence, the cooling velocity vT =
Gvcr are variable over the radius r. As a result, the ingot cross section becomes structurally inhomogeneous.

Figure 3 shows the dependence of the dendrite-cell size d1 on the ingot-extension velocity v and the
heater temperature Th (or the gradient in the melt). An increase in the dispersion of the structural components
is observed with increasing the above-mentioned parameters.

The beginning of the chemical reaction depends significantly on the initial concentration of dissolved
nitrogen C0

N (Fig. 4). Thus, for C0
N = 0.002% and the initial value C0

Ti = 0.5% (vcr = 0.167 mm/sec), the
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Fig. 5. Temperature of the beginning of the chemical reaction of TiCxN1−x formation versus the initial
concentrations of nitrogen and titanium: C0

Ti = 0.1 (1), 0.3 (2), and 0.5% (2).

formation of TiCxN1−x compounds starts at the point f∗liq = 0.25 (T ∗ = 1795 K), and for C0
N = 0.005%,

it begins at the point f∗liq = 0.885 (T ∗ = 1802 K). An increase in the nitrogen concentration from 0.002 to
0.005% leads to an increase in the amount of matter TiCxN1−x (the value of M) from 0.032 to 0.053%.

The composition of the chemical compounds formed changes. We have x = 0.0467–0.0156 in the
beginning of their formation and x = 0.266–0.257 at the end of solidification for CN = 0.002–0.005%. For
CN > 0.0055%, the inclusions arise in the uncrystallized region of the ingot, i.e., ahead of the front of the
two-phase region.

Figure 5 shows the temperature of the beginning of the chemical reaction of TiCxN1−x formation
versus the initial concentrations of nitrogen and titanium. An increase in the concentration of nitrogen and
titanium elements dissolved in the initial melt leads to an increase in the temperature of the beginning of
formation of the chemical compound, i.e., to the shift of the point of TiCxN1−x formation toward the front of
the two-phase region, and hence, to an increase in the inclusion size with an unchanged local cooling velocity
of the melt.

Thus, the mathematical model proposed allows one to study the laws of formation of the ingot structure
and the formation dynamics, composition, and dispersion of carbonitride compounds of variable composition,
which are formed at various stages of cooling and crystallization of a multispecies melt.
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